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Abstract— Humans are capable of continuously manipulating
a wide variety of deformable objects into complex shapes. This
is made possible by our intuitive understanding of material
properties and mechanics of the object, for reasoning about
object states even when visual perception is occluded. These
capabilities allow us to perform diverse tasks ranging from
cooking with dough to expressing ourselves with pottery-
making. However, developing robotic systems to robustly per-
form similar tasks remains challenging, as current methods
struggle to effectively model volumetric deformable objects and
reason about the complex behavior they typically exhibit. To
study the robotic systems and algorithms capable of deforming
volumetric objects, we introduce a novel robotics task of
continuously deforming clay on a pottery wheel. We propose
a pipeline for perception and pottery skill-learning, called
RoPotter, wherein we demonstrate that structural priors specific
to the task of pottery-making can be exploited to simplify the
pottery skill-learning process. Namely, we can project the cross-
section of the clay to a plane to represent the state of the
clay, reducing dimensionality. We also demonstrate a mesh-
based method of occluded clay state recovery, toward robotic
agents capable of continuously deforming clay. Our experiments
show that by using the reduced representation with structural
priors based on the deformation behaviors of the clay, RoPotter
can perform the long-horizon pottery task with 44.4% lower
final shape error compared to the state-of-the-art baselines.
Supplemental materials, experiment data, and visualizations are
available at robot-pottery.github.io.

I. INTRODUCTION

When we perform long-horizon deformable object manip-
ulation tasks such as making pottery, we can continuously
manipulate the deformable objects into complex shapes,
despite occlusions in the perception of the object’s state.
This ability to reason about a deformable object’s occluded
geometry allows us to perform diverse tasks robustly—from
cooking with dough to expressing ourselves with pottery.
However, developing robotic systems that can robustly per-
form these tasks remains challenging, due to the complex
deformation behavior of volumetric deformable objects [1].
A common approach to manipulating volumetric deformable
objects such as clay has been to learn a dynamics model
of the object. Despite often remarkable results [2–4], such
approaches presently have two drawbacks. First, state-of-
the-art methods for learning an explicit dynamics model of
the deformable objects in interaction with the environment
suffer from a high sample-complexity. For 2-dimensional
deformable objects such as cloth, researchers successfully
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Fig. 1. RoPotter Pipeline. We train a behavior cloning policy with expert
demonstration data from teleoperation and point cloud state estimates of the
clay. We demonstrate that the structural priors of the clay deformations and
geometry can assist with the recovery of occluded points during continuous
deformable object manipulation.

trained the model in simulation and directly transferred it
to the real world [5]. However, methods have struggled
to similarly model high dimensional interactions due to
the increased deformation complexity and the more notable
sim-to-real gap in modeling contact dynamics. Secondly,
and as a result of the first drawback, recent works on
volumetric deformable object manipulation often relied on
well-parameterized and task-dependent action sequences that
allow fully unoccluded observation of the object in between
each action to prevent drifting [2–4].

Behavior cloning is receiving growing attention among
robotic manipulation researchers as it requires fewer expert
design choices, such as reward-shaping, as long as the precise
actions during demonstrations are known [6–8]. Recently
proposed approaches such as Implicit Behavior Cloning [9]
and Diffusion Policy [10] have demonstrated an exceptional
ability to learn complex manipulation skills given a reason-
able number of human demonstrations, with some spatial
generalizability and robustness to distractions [11]. However,
despite their success in diverse manipulation tasks with cloth
and clay-rolling—to the best of our knowledge—these works
did not generalize these imitation learning pipelines to the
manipulation of volumetric deformable objects such as a
lump of clay. In this work, we use a pottery wheel with
clay to study volumetric deformable object manipulation and
demonstrate a pipeline for learning a bowl-making policy
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RGB-D Camera 2

RGB-D Camera 1

Clay

FingerRotation 
Direction

Pottery 
Wheel

Fig. 2. Our setup for robotic pottery-making: two RGB-D cameras each
provide a partial view of the clay, and multiple instances of the point clouds
are combined to increase how much of the total surface of the clay can be
observed.

with behavior cloning. Our task setup allows researchers
to study the space of continuous volumetric deformable
object manipulation with a simplified rigid 0 degree-of-
freedom end-effector, as shown in Fig. 2. Because clay
continuously deforms under contact, staged discrete-action
approaches previously taken with volumetric deformable
object manipulation tasks [4] are difficult to apply.

We present RoPotter, a pipeline for perception and behav-
ior cloning based on diffusion policy [10, 11] to deform a
block of clay into two bowl shapes. We incorporate structural
priors specific to the pottery wheel task to simplify the
skill-learning process. Namely, we show that because of the
pottery task’s radial symmetry, we can reduce the dimension
of the explicit clay state representation to the 2D plane
by taking a cross-section. Additionally, we demonstrate that
we can exploit the structure of a mesh initialized over the
starting shape of the clay to reason about the occluded
points throughout the task and learn skills effectively. To
summarize, we made the following contributions in this
work:

1) We design the novel, long-horizon task of robotic
pottery-making wherein an agent deforms a block of
clay into two bowls of different dimensions.

2) We develop a system, RoPotter, to collect and register
point clouds of the rotating clay deformable object and
a pipeline for collecting demonstrations from users.

3) We leverage a structural prior-based approach to shape
recovery and estimation of clay undergoing continuous
deformation, which we evaluate with ablations.

4) We provide a behavior cloning pipeline for policy
learning, which uses the proposed representations of
the clay shape, and we evaluate performances with both
geometric and semantic metrics.

II. RELATED WORK

A. Deformable Object Perception and Representation

Conventional methods of representing deformable objects
use analytical models such as mass-spring mechanics [1,
12, 13]. However, these methods rely on careful system
identification, require knowledge about the object’s material
properties, and are sensitive to empirically-derived parame-
ters [1, 14]. Recent advancements in learning representations
with 3D geometry such as PointNet [15], PointNet++ [16],
and PointBERT [17] have significantly improved robot capa-
bilities in various applications—from autonomous driving to
robot manipulation [4]. Additionally, methods in the broader
family of Graph Neural Networks (GNN) have enabled
researchers to introduce structure to the representation and
dynamics-learning problem [2].

Subsequent works demonstrated that the use of priors
can introduce structure and thereby regularize the represen-
tation learning process, yielding improvements in sample-
efficiency of model training [18]. In the domain of de-
formable robot shape representation, researchers have noted
that mechanics-based priors can help ground the soft body
states on physically admissible configurations [18]. However,
learning such explicit dynamics models requires either ex-
tensive exploration steps to perturb the object and observe
state changes [2, 3], or exploitation of the simulation en-
vironments’ privileged information that is not available in
the real world [19]. Instead of explicit dynamics models,
we leverage structural prior that does not require laborious
steps. We propose a pipeline for learning deformable object
manipulation skills for robot pottery-making, where, inspired
by previous works, we incorporate structural priors based on
task-dependent mechanics.

B. Deformable Object Manipulation

Various works have studied robot manipulation of de-
formable objects [1, 2]. Prior works can be broadly cat-
egorized by the dimensionality of the deformable objects.
Researchers have previously proposed various methods to
address robotic manipulation of one-dimensional deformable
objects such as ropes and cables [20, 21], two-dimensional
deformable objects such as cloth and flattened dough [22],
and three-dimensional deformable objects such as clay and
plasticine [2]. The ability to reason about manipulating three-
dimensional geometries has broad application including in
enabling new avenues of human expression through art for
instance via human-robot collaborative sculpting [23]. In
this work, we are specifically interested in robot pottery-
making with clay, which falls under the category of three-
dimensional deformable object manipulation. To the best of
our knowledge, this work presents the first methods for robot
pottery-making.

III. PROBLEM STATEMENT

Let S denote a set of states representing the space of 3D
shapes that can be made of clay on a pottery wheel; and
A, a set of end-effector actions available to a robot. The
task of robot pottery-making can be defined as modifying an
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Fig. 3. The pottery-making task. We demonstrate the RoPotter’s ability to
produce two bowls of different dimensions.
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Fig. 4. Proposed pipeline for the robotic pottery. We collected expert
demonstrations for the two bowl shapes using teleoperation with a gaming
console controller. We paired the expert-demonstrated actions with the point
cloud observation of the clay shape that was stiched together from multiple
virtual perspectives.

initial state of clay si ∈ S into a desired shape state sg ∈ S,
implicitly captured by the demonstrated set of final shape
states. The objective here is to learn a policy, πsg (a|s), which
can prescribe optimal action a ∈ A defined with respect to
the end-effector poses given diverse state s ∈ S towards
achieving goal shape sg ∈ S.

IV. METHODS

We propose a learning from demonstration (LfD) approach
to develop a pottery-making robotic system. Our approach
is designed to address the sample complexity issue of LfD
as well as the occlusions often present during continuous
deformable object manipulation. Specifically, structural and
mechanics-based priors can help simplify the robot learning
problem by grounding predictions to the set of physically
permissible spaces [2, 18]. In the RoPotter approach, we
propose the use of two types of structural priors of the pottery
task to reduce the complexity of the problem and account for
occlusion.

A. RoPotter-2D: Compact Representation with Structural
Priors

Because of the rotating base of the clay on a pottery wheel,
we assume radial symmetry of the clay shapes during the

Algorithm 1 RoPotter-Mesh Reconstruction
Input: P ∈ RN×3 ▷ Initial point cloud
Input: xt ∈ R7 ▷ Robot joint angles at time step t

1: Pxz ← {(x, z) | (x, y, z) ∈ P, |y|< Tthresh}
2: H ← ConvexHull(Pxz)
3: Haug ← AugmentInteriorPoints(H)
4: M0 ← DelaunayTriangulation(Haug) ▷ Initial mesh
5: Mt ←M0

6: for each time step t do
7: Ft ← ComputeFingerPoints(xt)
8: Pt ← P \ ConvexHull(Ft) ▷ Remove points in

robot finger convex hull
9: Pxz,t ← {(x, z) | (x, y, z) ∈ Pt, |y|< Tthresh}

10: Mt ← MoveVerticesToFit(Mt, Pxz,t) ▷ Move
vertices to fit observable points

11: for each vertex v ∈Mt do
12: if v ∈ ConvexHull(Ft) then
13: n← SurfaceNormal(Ft)
14: v ← v + δ · n ▷ Push vertex in the direction

of surface normal
15: end if
16: end for
17: Mt ← ARAPUpdate(Mt,M0) ▷ Update the mesh

using ARAP algorithm
18: end for
19: return Mt

TABLE I
ROPOTTER-MESH RECONSTRUCTION ACCURACY ABLATION

Method Input CD [mm] ↓∗
CS FP

Reference CS [Observed] P 0.0 2.46

Mesh w/o Contact P 15.41 17.01

Mesh w/o ARAP xt, P 4.45 7.74

Mesh [Proposed] xt, P 1.50 2.58

∗CS refers to cross-section and FP refers to full point cloud.

task. We also assume quasi-static conditions for the clay and
ignore dynamic effects during manipulation, modeling the
clay shapes as discrete states at each time step.

In our first proposed pipeline, RoPotter-2D, we reduce
the dimension of the observation space by taking a cross
section composed of the points within a 5mm threshold of a
plane containing the clay’s center of mass. The reduction of
dimension has the benefit of reducing the complexity of the
dataset that the policy network must reason over and filtering
out uninformative features. The 2D cross-section of the clay
concisely captures a corresponding 3D shape state in terms
of the diameter, height, and thickness of the walls.

B. RoPotter-Mesh: Shape Estimation with Structural Priors

In our RoPotter-Mesh reconstruction pipeline as outlined
in Algorithm 1, we use structural priors on how the clay
deforms and an assumption of local smoothness of the clay
geometry to recover occluded points. Previous works have



shown that deformable soft bodies represented by discrete
meshes often follow the constraints of local rigidity, also
known as As-Rigid-As-Possible (ARAP) deformation [18,
24].

ARAP includes a penalty on the rotations of the neigh-
boring edges, producing physically admissible mesh manip-
ulation [18, 24, 25]. The ARAP energy that we minimize
during ARAP deformation is given by:

(1)

Esmoothed(M,M ′) = min
R1,...,Rm

m∑
k=1

( ∑
i,j∈ek

cijk∥eij

−Rkeij∥2

+ λÂ
∑

el∈N(ek)

wkl∥Rk −Rl∥2
)

Here, M,M ′ define the mesh initialized with the point
cloud’s convex hull (line 4 Algorithm 1) and the deformed
mesh respectively, cijk are the cotan weights [26], λ is the
smoothness regularization weight, R1, ..., Rm ∈ SO(3) are
the local rotations for each of the edges ek ∈ E where
m = |E|, Â is the triangle area and wkl are the scalar
weight terms defined by the cotan weights of the dual mesh
of ekl [26]. As with previous works on using ARAP for shape
recovery and deformation, we use a local-global solver to
iteratively minimize the energy defined in Eq. 1. During the
local optimization step, we compute the locally best-fitting
rigid transformation Rk for each of the edge simplices to best
map to Mt from M0. In the global step, we update the metric
positions of the vertices i, j ∈ ek with least squares fitting
to make them as consistent with rigid transformation Rk as
possible. We repeat the local-global steps until convergence
within the energy threshold or maximum iteration.

As outlined in Algorithm 1, we use ARAPUpdate to
recover occluded points in the partial point cloud of the clay
cross-section. With MoveVerticesToFit, we move the vertices
of the mesh to their closest neighbors in the partial point
cloud observation (line 10 Algorithm 1). We also displace the
points in contact with the RoPotter finger, that are identified
by checking for points in the convex hull of the finger
with respect to the surface normal (line 14 Algorithm 1).
Using the displaced points and the bottom row of points that
are attached to the pottery wheel as constraint points, we
minimize the energy in Eq. 1.

C. Learning From Demonstration with 3D representation

Learning from Demonstrations via Imitation Learning
provides an intuitive approach to robot skill acquisition,
where expert demonstrations are directly used by the robot
agent policy to quickly learn the involved underlying
skills [27]. In Behavior Cloning, specifically, the policy
learns to map observations to the demonstration actions.
Such approaches benefit from intuitive training processes,
few implementation-level challenges, and strong supervision,
at the cost of requiring observations labeled with correspond-
ing expert actions [6]. Our RoPotter approach learns robot
pottery-making skills from human demonstration data, using
action and observation pairs provided through teleoperation.

Observed Point Cloud
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Fig. 5. RoPotter-Mesh method outline and ablation results.

Demonstration Collection: To collect demonstrations of
the robot deforming the clay into a desired bowl shape, we
controlled the change in pose of the finger with a gaming
console controller (Xbox Wireless Controller, Microsoft) as
shown in Fig. 4. The point clouds are pre-processed and
merged into discrete observations, as described in Section V-
C. In each demonstration, we deformed the clay procedurally
until the overall measurements of the bowls matched the ones
outlined in Section III. We trained a behavior cloning policy
after collecting 40 demonstrations.
Policy Learning: We build on the previous work on
diffusion policy with 3D point cloud observations [11]
for the presented results. The end-effector orientation is
represented with the continuous 6-dimensional representation
as previously proposed [28]. The full pose of the end-effector
with position and orientation is encoded with an MLP to
a 64-dimensional feature. The merged and down-sampled
point clouds are encoded with the DP3 encoder [11] to
a 64-dimensional observation feature. For the baseline, we
directly use the DP3 encoder architecture as described in Ze,
et al. [11]. For our two proposed methods, we use the two-
dimensional variant of the encoder. Next, the robot pose and
point cloud features are concatenated. The diffusion policy
then denoises random noise into an action sequence, condi-
tioning on these state features. We use a single clay shape
observation as input to the policy and predict a sequence of 8
denoised actions, which helps with the temporal consistency
of the trajectories as noted in the literature [10, 11].

V. IMPLEMENTATION DETAILS

A. Robotic Pottery Setup

As seen in Fig. 2, our robotic pottery setup has a pottery
wheel with two colored markers (green and blue) on the
edge of the pottery wheel surface that allow us to track the
orientation of the clay at a given instance as the clay rotates
at approximately three rotations a second.



Fig. 6. Boxplots showing the full distributions of chamfer distances. For
a bowl produced by a given policy and clay mass, the chamfer distance is
calculated between this bowl’s final state and every final bowl state in the
corresponding set of demonstrated bowls, creating a single distribution.

B. Sensor Setup

Two RGB-D cameras (Realsense D415, Intel) are posi-
tioned, pointed at the clay, to observe the deforming clay
shape at approximately 25 Hz and to capture partial point
cloud views of top- and side-view perspectives. The two
cameras were calibrated to the pottery wheel frame, where
the origin is defined to lie on the wheel’s rotation axis.
During demonstrations, we capture the robot joint states as
well as the point cloud of the bowl from virtual perspectives
provided by the rotation of the clay.

C. Point Cloud Pre-Processing

In the initial frame, we detect both of the markers’ centroid
positions. We then define the orientation reference vectors
from the centroid of each marker to the origin of the
pottery wheel frame, and normalize to unit length as r⃗0 =

pm−po

∥pm−po∥2
where pm, po ∈ R2 are respectively the marker

and origin points projected onto the pottery wheel surface.
In the subsequent frames, we track one of the two markers’
positions to get the new orientation vector r⃗t (the position
of the markers is susceptible to occlusion, but both markers
are never occluded simultaneously). We then compute the
rotation angle θ = arccos(r⃗t · r⃗0). The observed point clouds
of the clay are merged as they are rotated from the start
orientation until they make a full rotation. The combined
point cloud is downsampled to 1,024 points and is used as
a single full observation of the clay at a time instance.

VI. EVALUATION

A. Experimental Setup

For the purpose of evaluation, we design two types of
pottery-making tasks as follows. We define two goal bowl
geometries, where a ‘wide bowl’ goal is defined by outer
diameter of 100.0 mm and height of 60.0 mm, and a ‘tall
bowl’ goal has an outer diameter of 70.0 mm and height of
70.0 mm.

All models received 40 demonstrations of teleoperated
continuous robot deformable manipulation of clay into each

TABLE II
POLICY EVALUATION AGAINST DEMONSTRATED POTTERY

Method Task Clay Mass [g] CLIP Similarity ↑ CD [mm] ↓

DP3
[Baseline]

Wide
250 0.945 4.95
300 0.962 2.55
350 0.971 2.50

Tall
250 0.965 2.32
300 0.940 4.78
350 0.974 1.96

RoPotter-2D
[Proposed]

Wide
250 0.954 3.80
300 0.972 2.44
350 0.973 2.15

Tall
250 0.974 1.64
300 0.958 1.56
350 0.968 1.99

RoPotter-Mesh
[Proposed] Wide

250 0.951 2.75
300 0.971 2.28
350 0.972 2.28

of the two bowl types; demonstrated bowl shapes will have
variance caused by imperfect human demonstrations.

To test the generalizability of the policy, we also controlled
for and precisely varied the amount of clay that was on the
pottery wheel. We present the metrics that we propose for
the evaluation of these policies and discuss the results.

B. Metrics

Previous works on learning from demonstration for manip-
ulation relied on the tasks having clear success criteria, where
the researchers can clearly classify the success of trials.
However, our novel task of robotic pottery does not afford
such clear evaluation criteria. As shown in Fig. 7, failure
cases can sometimes be clear when the robotic agent fails to
continue through the task or causes the catastrophic collapse
of the clay structure. In other cases, however, success evalu-
ation may require arbitrary distinction on which mistakes
are disqualifying. To quantitatively evaluate the proposed
methods, we propose two metrics: a geometric similarity and
a semantic similarity to the demonstrated pottery.
Chamfer Distance metric (Geometric Similarity): We
use the Chamfer Distance (CD) metric for assessing ge-
ometric similarity. The unidirectional CD metric from the
source point cloud PS to target point cloud PT is defined
by [19, 29]:

dUCD(PS , PT ) =
1

|PS |
∑
x∈Ps

min
y∈PT

∥x− y∥2 (2)

When elements from both PS and PT can be accurately
matched to each other, we can use the bidirectional vari-
ant of CD defined as the average of dBCD(PS , PT ) =
1
2 [dUCD(PS , PT ) + dUCD(PT , PS)]. When we evaluate the
RoPotter structural prior-based mesh state estimation, we use
dUCD metric from the observed real-world point cloud to the
mesh vertex point cloud because the mesh includes internal
points of the clay cross-section points that are not visible
in the real world with external RGB-D cameras. When we
evaluate the real-world point clouds of the bowls produced
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Fig. 7. Results of RoPotter robot pottery pipelines. Reference row shows the demonstrated bowls.

Fig. 8. Visualization of the bowl demonstrations’ semantic features.

by the trained policy roll-out against the demonstrated bowl
real-world point clouds, we use dBCD.

CD can broadly offer a measurement of geometric ac-
curacy, capturing details such as metric height, diameter,
and wall thickness. However, it is also prone to biases
from outlier points by averaging the distances in Eq. 2. CD
also tends to filter or average out high-frequency geometric
features [30].
CLIP Score (Semantic Similarity): Additionally, in our
problem statement in Section VI-A, goals such as ”wide,”
”tall,” and even ”bowls” are largely only semantically mean-
ingful descriptors that were implicitly captured with geo-
metric goals of desired diameter and height. Toward evalu-
ating our methods in the semantic space, we propose using

CLIP [31] to compute feature similarity between the images
of the bowls produced by the policy and the demonstrated
bowls. To account for the differing lighting conditions, we
re-render the voxelized point clouds using a physics-based
renderer [32] and we use cosine similarity to compare the
features. Fig. 8 shows a visualization of the feature space
spanned by the demonstrated bowls. For both the geometric
and semantic metrics, we report the results of the methods
in Table II.

C. Experiments

We first evaluated the RoPotter-Mesh algorithm as outlined
in Algorithm 1 to recover occluded points. For evaluation,
we rolled out the demonstrated actions and corresponding
partial point clouds for each wide and tall pottery task.
We first computed the CD of RoPotter-Mesh’s cross-section
prediction to the final unoccluded cross-section. We then
rotated the predicted cross-section by the pottery wheel’s
rotational axis and computed the CD to the unoccluded final
point cloud of the clay without the finger in the scene.
We included ablation results with the contact displacement
step and the ARAP step as discussed in Section IV-B. To
validate that the clay is indeed radially symmetric, we also
included a comparison between the unoccluded cross-section
that was rotated on the axis of the pottery wheel rotation and
compared to the fully observed point cloud of the clay. The
observed results in this row provide an upper limit to the
achievable performance of the presented methods.

We compared training a diffusion policy with RoPotter-2D
and RoPotter-Mesh against using 3D point clouds as outlined
in state-of-the-art 3D diffusion policy work [11]. To show the
ability of the policy to generalize well to changing initial
conditions, we tested the two bowl-making tasks with 250,



300, and 350 g of clay on the pottery wheel. The initial shape
of the clay was consistent across the trials and methods to
fairly evaluate the methods.

D. Discussion

The ablation with the Fig.5 and Table I showed that
each of the steps in RoPotter-Mesh is necessary to produce
reliable mesh recovery of the clay cross-section. We noted
that considering the contact conditions of the clay (line 14,
Algorithm 1) is crucial in reducing the disparity between the
reconstructed and ground-truth clay shapes. And introducing
the ARAP-based occluded point recovery reduced the CD by
66.3%.

As shown in the diffusion policy roll-out in Fig. 7, the
policies trained in this work on 40 demonstrations can
effectively deform the lump of clay into a bowl. Notably,
the policy learned to replicate the strategy from most of the
demonstrations, where we started with pushing the clay out
from the center and then iterated on lifting the wall of the
bowl from either side until the bowl had the approximately
desired diameter and height.

When the robot finger first opens up the lump of clay into a
concave shape, the resulting outer diameter depends on the
amount of clay present, because the diameter is governed
by the amount of clay available to be displaced laterally.
Because the initial outer diameter varies with clay mass,
different trajectories are required for the following phase,
during which the robot finger lifts the clay walls up from
either side. If these trajectories are not adjusted accordingly,
the resulting shape may still have the same diameter, as the
robot finger can directly constrain this dimension. However,
the height may be significantly different. This is because the
height of the bowl depends on how much the robot finger
pushes on the walls of the bowl.

In our experiments, we observe distinct differences in the
policies’ abilities to adjust their trajectories given initial clay
masses that are slightly out of the distribution of their training
data. Across the board, the baseline policy seemed to adjust
its trajectory less to the observed initial state, consistently
resulting in final bowl shapes that were too tall when a
large amount of clay was provided, and too short when
a small amount of initial clay was provided. The bowls
produced by the 2D and mesh encoder policies also had the
same challenges but to a lesser degree. Most noticeably, the
baseline policy failed in one trial for a tall bowl with 300g
of clay. Quantitatively, we show in Fig. 6 that for all tasks
performed with 250g or 350g of clay, the CD distribution
between the policy-produced bowls and demonstration bowls
is lower for the bowls produced by the two proposed policies.

We hypothesized that the policy trained with RoPotter-
Mesh would have an advantage when it came to reason-
ing about the internal shape of the deformed clay as it
directly reasons about the contact between the finger and
the clay to update the clay states even when it may not be
visible from the external perspective. With the experiments
with wide bowl-making task, the hypothesis was validated.
Additionally, since the mesh is deformed over time but

retains information between timesteps, RoPotter-Mesh most
likely acted as a filter for observation noise. This may help
the continuity of the predicted trajectories over time, and
qualitatively we noticed the mesh policy seemed to progress
in the tasks more quickly than the other policies with fewer
erratic actions compared to the baseline and RoPotter-2D
policies. To summarize, the RoPotter-Mesh policy performed
44.4% better on the wide bowl-making task with 250 g
of clay compared to the baseline 3D policy and overall
performed best in the wide bowl-making task.

The baseline policy only performed best on the tall bowl-
making task with 350 g of clay; however, the proposed
methods also performed exceptionally well on this task,
achieving CD error of below 2.0 mm. Notably, we can also
observe in Fig. 6 that the demonstrated bowls that we use
to compare the policy-made bowls introduce a range of
around 2.0 mm, indicating that all three policies may have
reached upper-limit of performance based on the variance
of the demonstrated bowls. The semantic metric scores were
consistent with the geometric metric, which can be explained
by the fact that the semantic goals of pottery-making were
captured well by the geometric task definition.

VII. CONCLUSION

In this work, we present RoPotter, a behavior cloning
pipeline for learning a policy for the novel task of robot
pottery-making, aided by dimensional reduction of the
state space and structural priors. We demonstrated that the
RoPotter-Mesh pipeline can recover the occluded points of
the clay during continuous clay manipulation tasks with a
pottery wheel by relying on mechanics-based priors. The
results also showed that using the cross-sectional representa-
tion of the clay shape with RoPotter-2D and RoPotter-Mesh
allowed the behavior cloning policies trained on them to
achieve better performance on the pottery-making tasks even
with varying initial conditions.

A limitation of this work is that the RoPotter-Mesh re-
construction method as presented in Algorithm 1 relies on
well-initialized meshes and consistent sampling of accurately
observed robot actions to update the cross-section mesh.
In this work, these are viable assumptions as the environ-
ment is controlled and structured. However, as we extend
this pipeline toward a generalizable method for volumetric
deformable object manipulation, we plan to integrate the
ARAP-based local rigidity into a learned reconstruction
approach that will be robust to inconsistent signals.

Another extension of the work will be toward learning
goal-conditioned policies for RoPotter. Similar to the chal-
lenges of the metrics defined in Section VI-B, defining
what is an intuitively useful goal representation for the
bowl will be a challenge that we will first approach with
optimizing over the pre-trained vision-language representa-
tions such as CLIP [31]. We also hope to build on these
works toward enabling human-robot collaborative sculpting
similar to the recent emergence of collaborative human-robot
painting [33].
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